Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dongyan Yuan, Mingjie Zhang,* Zhaohui Pan and Penggao Ma

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: mjzhangtju@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.051 wR factor = 0.128 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,5-Bis(1-piperidinylmethyl)benzene-1,4-diol

The title compound, $C_{18}H_{28}N_2O_2$, is a product of a Mannich reaction involving hydroquinone, formaldehyde and piperidine. The molecule occupies a special position on an inversion centre. The structure is stabilized by an intramolecular O- $H \cdots N$ hydrogen bond linking the phenol OH group and a piperidyl N atom. Received 7 June 2004 Accepted 5 July 2004 Online 17 July 2004

Comment

The Mannich reaction is extremely useful for the preparation of nitrogenous molecules (Arend *et al.*, 1998; Zhou *et al.*, 2000). Its popularity (Laobuthee *et al.*, 2001) is due to the widespread occurrence of nitrogen in drugs and natural products, as well as the diversity of this multicomponent reaction. 2,5-Bis(1-piperidinylmethyl)benzene-1,4-diol, (I), has been synthesized by the Mannich reaction (Miller *et al.*, 1965; Shriner *et al.*, 1946). The crystal structure of (I) is reported in this paper.

The molecular structure of (I) is shown in Fig. 1. The molecule occupies a special position on a crystallographic inversion centre. The piperidine ring has the usual chair conformation. Because of the steric hindrance between the benzene and piperidine rings, atom C4 has a distorted tetrahedral geometry, with the N1–C4–C3 angle [112.28 (17)°] deviating significantly from the regular tetrahedral value. Intramolecular O–H···N hydrogen bonds (Table 2) stabilize the crystal structure.

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. The suffix A corresponds to symmetry code (i) in Table 1.

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

Experimental

To a suspension of 1 g (33 mmol) of paraformaldehyde and 0.2 g (1.8 mmol) of hydroquinone in 20 ml of stirred ethanol was cautiously added 0.31 g (3.6 mmol) of piperidine. A mildly exothermic reaction ensued. After reflux for 6 h, the solvent was evaporated. The crystalline product was separated and recrystallized from ethanol (yield 69%). Colourless prism-shaped single crystals suitable for X-ray structure analysis were obtained (m.p. 469-471 K). Spectroscopic analysis, IR (KBr, v, cm⁻¹): 3432, 2947, 2858, 1480, 1453, 1378, 869; ¹H NMR (CDCl₃, p.p.m.): 6.48 (s, 2H), 3.62 (s, 4H), 2.43-2.80 (m, 8H), 1.46-1.65 (m, 12H). Analysis calculated for C₁₈H₂₈N₂O₂: C 71.02, H 9.27, N 9.20%; found: C 71.13, H 9.60, N 9.31%.

Mo $K\alpha$ radiation

reflections

 $\theta = 2.6 - 25.6^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

Prism, colourless

 $0.20 \times 0.16 \times 0.10 \text{ mm}$

Cell parameters from 644

Crystal data

 $C_{18}H_{28}N_2O_2$ $M_{\rm r} = 304.42$ Triclinic, P1 a = 6.372 (2) Å b = 8.184(3) Å c = 8.649(3) Å $\alpha = 72.349 (5)^{\circ}$ $\beta = 81.745 \ (6)^{\circ}$ $\gamma = 80.865(5)^{\circ}$ $V = 422.2 (3) \text{ Å}^3$ Z = 1 $D_x = 1.197 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector	$R_{\rm int} = 0.017$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
φ and ω scans	$h=-7\to7$
Absorption correction: none	$k = -8 \rightarrow 9$
2215 measured reflections	$l = -5 \rightarrow 10$
1487 independent reflections	
982 reflections with $I > 2\sigma(I)$	

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0504P)^2]$
+ 0.1017P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.372 (2)	N1-C5	1.464 (3)
N1-C4	1.475 (3)	N1-C9	1.463 (3)
O1-C1-C2	118.6 (2)	N1-C5-C6	111.31 (19)
O1-C1-C3 ⁱ	121.42 (19)	N1-C9-C8	111.57 (18)
N1-C4-C3	112.28 (17)		
01-C1-C2-C3	-179.63 (18)	N1-C5-C6-C7	-56.3 (3)
C2-C3-C4-N1	138.2 (2)	C7-C8-C9-N1	57.1 (2)

Symmetry code: (i) -x, -y, -z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots N1^i$	0.82	2.00	2.711 (2)	146

Symmetry code: (i) -x, -y, -z.

All H atoms were located in a difference map and included in the refinement in the riding-model approximation (O-H = 0.82 Å andC-H = 0.93-0.97 Å), with $U_{iso}(H) = 1.2U_{eq}(C) [U_{iso}(H) = 1.5U_{eq}(O)]$ in the case of the hydroxyl H atom].

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Arend, M., Westermann, B. & Risch, N. (1998). Angew. Chem. Int. Ed. 37, 1044-1070

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Laobuthee, A., Chirachanchai, S., Ishida, H. & Tashiro, K. (2001). J. Am. Chem. Soc. 123, 9947-9955.

Miller, J. B., Fields, D. L. & Reynolds, D. D.(1965). J. Org. Chem. 30, 247-251. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany

Shriner, R. L., Grillot, G. F. & Teeters, W. O. (1946). J. Am. Chem. Soc. 68, 946-947.

Zhou, B. S., Guo, J. S. & Danishefsky, S. J. (2000). Tetrahedron Lett. 41, 2043-2046.